24 research outputs found

    PROGNOSTICS OF POLYMER POSITIVE TEMPERATURE COEFFICIENT RESETTABLE FUSES

    Get PDF
    Polymer positive-temperature-coefficient (PPTC) resettable fuse has been used to circuit-protection designs in computers, automotive circuits, telecommunication devices, and medical devices. PPTC resettable fuse can trip from low resistance to high resistance under over-current conditions. The increase in the resistance decreases the current and protects the circuit. After the abnormal current is removed, and/or power is switched off, the fuse resets to low resistance stage, and can be continuously operated in the circuit. The resettable fuse degrades with the operations resulting in loss or abnormal function of the protection of circuit. This thesis is focused on the prognostics methods for resettable fuses to provide an advance warning of failure and to predict the remaining useful life. The failure precursor parameters are determined first by systematic analysis using failure modes, mechanisms, and effects analysis (FMMEA) followed by a series of experiments to verify these parameters. Then the causes of the observed failures are determined by failure analyses, including the analyses of interconnections between different parts, the microstructures of the polymer composite, the properties (such as crystallinity) of the polymer composite, and the coefficient of thermal expansion (CTE) of different parts. The revealed failure causes include the cracks and gaps between different parts, the agglomerations of the carbon black particles, the change in crystallinity of the polymer composite, and the CTE-mismatches between different parts. Cross validation (CV) sequential probability ratio test (CVSPRT) is developed to detect anomalies. CV methods are introduced into SPRT to determine the model parameters without the need of experience and reduce the false and missed alarms. A moving window training updating based dynamic model parameter optimization (MW-DMPO) n-steps-ahead prognostics method is developed to predict the failure. MW methods update the training data for prediction models by a moving window to contain the latest degradation information/data and improve the prediction accuracy. For each updating of the training data, the model parameters for data-trending model are updated dynamically. Based on the developed MW-DMPO method, a MW cross validation support vector regression (MW-CVSVR) n-steps-ahead prediction is developed to predict failures of PPTC resettable fuses in this thesis. The cross validation method is used to determine the proper SVR model parameters. The CVSPRT anomaly detection method and MW-DMPO n-steps-ahead prognostics method developed in this thesis can be extended as general methods for anomaly detection and failure prediction

    Sensor Systems for Prognostics and Health Management

    Get PDF
    Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented

    Clinical Study Metformin and Diammonium Glycyrrhizinate Enteric-Coated Capsule versus Metformin Alone versus Diammonium Glycyrrhizinate Enteric-Coated Capsule Alone in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus

    Get PDF
    Objective. The present study was conducted to compare the efficacy of metformin combined with diammonium glycyrrhizinate enteric-coated capsule (DGEC) versus metformin alone versus DGEC alone for the treatment of nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM). Subjects and Methods. 163 patients with NAFLD and T2DM were enrolled in this 24-week study and were randomized to one of three groups: group 1 was treated with metformin alone; group 2 was treated with DGEC alone; group 3 received metformin plus DGEC combination therapy. Anthropometric parameters, liver function, lipid profile, serum ferritin (SF), metabolic parameters, liver/spleen computed tomography (CT) ratio, and fibroscan value were evaluated at baseline and after 8, 16, and 24 weeks of treatment. Results. After 24 weeks, significant improvements in all measured parameters were observed in three groups ( < 0.05) except for the improvements in low density lipoprotein cholesterol (LDL-C) and metabolic parameters in group 2 which did not reach statistical significance ( > 0.05). Compared with group 1 and group 2, the patients in group 3 had greater reductions in observed parameters apart from CB and TB ( < 0.05). Conclusions. This study showed that metformin plus DGEC was more effective than metformin alone or DGEC alone in reducing liver enzymes, lipid levels, and metabolic parameters and ameliorating the degree of hepatic fibrosis in patients with NAFLD and T2DM

    Molecular beam epitaxy as a growth technique for achieving free-standing zinc-blende GaN and wurtzite AlxGa1-xN

    Get PDF
    Currently there is a high level of interest in the development of ultraviolet (UV) light sources for solid state lighting, optical sensors, surface decontamination and water purification. III-V semiconductor UV LEDs are now successfully manufactured using the AlGaN material system; however, their efficiency is still low. The majority of UV LEDs require AlxGa1-xN layers with compositions in the mid-range between AlN and GaN. Because there is a significant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to those of either GaN or AlN for many ultraviolet device applications. However, the growth of AlxGa1-xN bulk crystals by any standard bulk growth techniques has not been developed so far. There are very strong electric polarization fields inside the wurtzite (hexagonal) group III-nitride structures. The charge separation within quantum wells leads to a significant reduction in the efficiency of optoelectronic device structures. Therefore, the growth of non-polar and semi-polar group III-nitride structures has been the subject of considerable interest recently. A direct way to eliminate polarization effects is to use non-polar (001) zinc-blende (cubic) III-nitride layers. However, attempts to grow zinc-blende GaN bulk crystals by anystandard bulk growth techniques were not successful. Molecular beam epitaxy (MBE) is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. In this study we have used plasma-assisted molecular beam epitaxy (PA MBE) and have produced for the first time free-standing layers of zinc-blende GaN up to 100 μm in thickness and up to 3-inch in diameter. We have shown that our newly developed PA-MBE process for the growth of zinc-blende GaN layers can also be used to achieve free-standing wurtzite AlxGa1-xN wafers. Zinc-blende and wurtzite AlxGa1-xN polytypes can be grown on different orientations of GaAs substrates - (001) and (111)B respectively. We have subsequently removed the GaAs using a chemical etch in order to produce free-standing GaN and AlxGa1-xN wafers. At a thickness of ∼30 μm, free-standing GaN and AlxGa1-xN wafers can easily be handled without cracking. Therefore, free-standing GaN and AlxGa1-xN wafers with thicknesses in the 30–100 μm range may be used as substrates for further growth of GaN and AlxGa1 xN-based structures and devices. We have compared different RF nitrogen plasma sources for the growth of thick nitride AlxGa1-xN films including a standard HD25 source from Oxford Applied Research and a novel high efficiency source from Riber. We have investigated a wide range of the growth rates from 0.2 to 3 μm/h. The use of highly efficient nitrogen RF plasma sources makes PA-MBE a potentially viable commercial process, since free-standing films can be achieved in a single day. Our results have demonstrated that MBE may be competitive with the other group III-nitrides bulk growth techniques in several important areas including production of free-standing zinc-blende (cubic) (Al)GaN and of free-standing wurtzite (hexagonal) AlGaN

    Anomaly Detection of Polymer Resettable Circuit Protection Devices

    No full text

    One-step in-situ sprouting high-performance NiCoSxSey bifunctional catalysts for water electrolysis at low cell voltages and high current densities

    No full text
    Engineering high-performance non-precious metal-based bifunctional catalysts for water splitting are still facing some issues especially at industry-relevant current densities. Here, this challenge is addressed by the new approach to grow extra-stable nickel cobalt sulfur-selenide (NiCoSxSey) nanosheet catalysts on nickel–cobalt foam (NCF), and the obtained NiCoSxSey affords the low overpotentials of 345 mV for hydrogen evolution reaction (HER) and 427 mV for oxygen evolution reaction (OER) at 1000 mA cm−2 (j1000). Meanwhile, the NiCoSxSey/NCF also shows the excellent long-term stability for both HER and OER processes driven with j100 for 100 h and j500 for 24 h. In addition, the cell voltage assembled with NiCoSxSey/NCF is only 1.84 V at j500 in 1 M KOH, and the I-t characteristic shows a low decay (100. The ab-initio simulations reveal that the CoS2-CoSe2, Ni3S2-Ni3Se2 and CoS2-Ni3Se2 interfaces are the active sites for HER

    Compositional and crystallographic design of Ni-Co phosphide heterointerfaced nanowires for high-rate, stable hydrogen generation at industry-relevant electrolysis current densities

    No full text
    Lack of high-performance noble-metal free electrocatalysts for hydrogen evolution reaction (HER) to exceed the benchmark Pt-based electrocatalysts, still remains a major hurdle on the way to clean hydrogen economy. Here we rationally, atomistically design and synthesize the hetero-interfaced Ni-Co phosphide nanowires which deliver exceptional activity and stability in water electrolysis under industry-relevant current densities. The compositional and crystallographic design produces extra-stable Ni5P4-Co2P nanowires sprouting from a Ni-Co alloy foam (NCF). The extraordinary reactivity is ensured by the heterointerfaces between the highly-active (303) crystal planes of Co2P and Ni5P4 nanowire phases. The overpotentials of Ni5P4-Co2P/NCF catalysts at −10, −100, and −1000 mA cm−2 are about 21, 92 and 267 mV in 1 M KOH, respectively, far exceeding the commercial Pt/C catalysts. The Tafel slope of Ni5P4-Co2P/NCF catalyst is only 23 mV dec−1, indicating an even faster HER kinetic compared to Pt/C (32 mV dec−1). Moreover, the Ni5P4-Co2P/NCF catalyst shows an ultra-stable and lasting performance, evidenced by only a minor 3.6% drop at j250 after 100 h continuing operation. The DFT calculations confirm that the exposed heterointerfaces between (303) planes of Ni5P4 and Co2P phases play a key role for boosting the HER activity of Ni5P4-Co2P electrocatalyst.</p

    Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro.

    No full text
    Oxidative stress (OS), as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS) and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA), as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM). In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2', 7'-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH) did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce oxidative stress. The findings from this study clearly demonstrate that curcumin is effective to reduce the dysregulation of cellular redox balance on porcine granulosa cells in vitro and should be further investigated for its protective role against ZEA in animals
    corecore